KAM_MODIFIER

(this entire document is based on the version of Kam_Modifier we are currently using)
This AI is used purely to modify the Cameras behaviour. You will need to have a WP with the Kam_Modifer AI added to it (found in 04 Technical Bank\AI Models\Kanada2\Kam_Modifier)
Type of Operation (2 modes): i_mode

Mode LEVEL DESIGN makes it possible to force the camera into a position at a specific place.
Mode ADJUSTCAMNORMALE makes it possible to change parameters on the standard camera.
[image: image1.png]Type de Fonctionnement

Activation: t_activation

As I currently see it, all Camera switches will be done using Triggers (a BV). Upon entering the Trigger the Kam_Modifier will take over the normal Camera functions.
[image: image2.png]Activation

Example Script:

TrigTest_Simple.fcl:

TrigTest_PivotInBV:
GAO_BV
:
Cam_Test_BV

GAO_Pivot
:
_PJ_Kong

Inverse Test
:
0 (if set to 1 will swap only if Kong isn’t in the BV)
This will start the Kam_Modifier when Kong enters the specified BV.
Positioning: o_wp_reseau_pos

You can specify an object which is fixed or an object which moves on a Network. The Network cannot be connected (you can, however create a circle by positioning the last point of the network on the first point of the network ("Ctrl-M" does that very well)). As I understand this, it means the Network must have a start and an end. In order to ensure the root is correct, you can set the root on a non-closed Network if you Right-Click on the object (Set as Root) The o_wp_reseau_pos should, I assume, be the root WP of your Network.
[image: image3.png]WP Fixe ou Network

Type of Projection: (Only true if a o_wp_reseau_pos has been defined)
This is a very important part of the Kam_Modifier, that can be a little hard to get to grips with, so… listen good!! (Projection makes it possible to define where on a Network a Camera should be. In general, this projection is controlled by the position of Kong but can be altered or controlled with some of the following variables/objects.
[image: image4.png]En Network: Type de Projection

o_ref_axis:
This is a GAO (more often than not a WP) that is used as an axis reference to determine either the angle at which the Camera is aligned to Kong (fixed axis) or the point that the Camera will align itself to through Kong (non-fixed axis).

i_fixed_axis: This specifies how the axis of projection is calculated. If i_fixed_axis is true, the axis will have a fixed alignment based on the alignment of the axis taken from the o_ref_axis. If the i_fixed_axis is set to false then the alignment of the o_ref_axis is not considered, only its position.
Examples of fixed axis:

[image: image5.jpg]@ camera

@ vaypoint
@ netvork

kong
o

[image: image6.jpg]@ camera

@ waypoint
@ netvork

® rong
@by

— -

Examples of non-fixed axis:

[image: image7.jpg]@ camera

@ vaypoint
@ netvork

kong
o

[image: image8.jpg]@ camera

@ vaypoint
@ netvork

kong
o

The important thing to remember with a non-fixed axis when on a network is that it is purely using the o_ref_axis to determine where along the network the camera should be in relation to Kong. The direction of the camera is primarily controlled by Kong.
i_axis_single_direction: (this example is working on the assumption that the camera is not on a network)
With this set to false, you essentially have a double axis. –Y and +Y for example. This means the camera essentially has two positions it can be in. This is calculated, I believe, by the camera’s current position in relation to the axis it will go to. If it is closer to –Y for example, the camera will reorient to this position rather than take the longer route back to +Y.
Example of i_axis_single_direction: This simply means the camera will only use one direction of projection.
[image: image9.jpg]Single Direction
Both Direction

 INCLUDEPICTURE "cid:956321518@10032005-1cd3" * MERGEFORMATINET [image: image10.jpg]

o_k_GC_ActeurReference: This allows us to change the actor or object that will share the projection with Kong and the o_ref_axis. Normally this would simply be set to Kong (or may even be Kong by default). Essentially this simply replaces Kong as the actor that controls where along the network the camera is, the direction of travel, the speed etc. However, the camera will still keep Kong as its target.
Example Diagram:
[image: image11.jpg]@ camera
@ waypoint
@ network

® rong
by

W actorref

In the case above, if you imagine that the actor ref is Ann running away from Kong. The camera wouldn’t necessarily ever be looking at Ann, but, it will travel with her as she runs away, all the time looking at Kong. So basically, everything works exactly the same as a normal fixed axis or non-fixed axis operation. However, the travel along the network is defined by the, o_k_GC_ActeurReference, (whether this is Kong or not).
LevelDesign Camera Parameters: The following settings are specific to the LevelDesign Camera mode.
Transitions:
f_k_GC_TransitionSpeed_In: Simply specifies the transition speed for the camera to enter the Kam_Modifier changes to the camera. (0 = Cut, 1 = slow, 10 = very fast)
f_k_GC_TransitionSpeed_Out: As above, but used for the transition back to the normal Camera operation.
[image: image12.png]fk_GC_TransitionSpeed_In (Init)
1 6C_TransitionSpesd_Out (ni)

0.000000
1000000

Note: if you force a transition from exit (f_k_GC_TransitionSpeed_Out), but are entering another Kam_Modifier, the f_k_GC_TransitionSpeed_In for the new Kam_Modifier will be ignored.

Camera Positioning Constraints:
i_k_GC_active_occlution: This will use a ray to determine if an object with a colmap is between the Camera and Kong. If it is, it will put itself in-front of this object in order to keep Kong visible.
All the constraints are applied in this order:
f_k_GC_dist_max_a_kong: (constraint 1)
Variable 1: This is the maximum distance, away from Kong, the Camera will get. If this value is null, then Variables 1, 2 and 3 will not carried out.
f_k_GC_dist_max_devant_la_cam: (constraint 2)
Variable 2: This is the distance away from the network that the Camera move towards Kong in order to allow for Variable 1 to stay true. However, if Kong exceeds the distance allowed here, the above constraint will be ignored.
f_k_GC_dist_max_derriere_la_cam: (constraint 3)
Variable 3: This allows us to prevent strange camera behaviour if Kong gets too close to a Network. Here a value can be used to determine how far the Camera will back up if Kong approaches (based on variable 1, for example, if variable 1 is set to 10, when Kong is 8 metres away from the Network, the Camera will now be 2 metres behind the Network).
i_k_GC_include_all_ennemies:

Variable 4: This allows us to add a value for how much the Camera will move (a retreat, never an advance) to show all enemies.
f_k_GC_recul_max_all_ennemies:
Variable 5: This is simply a distance value that will determine how far the Camera will be allowed to retreat if Variable 4 is set to true.
[image: image13.png]GC_ative_ocelution (Init) faux
GC_dit_max_a_kang (ni) 16000000
GG _distmax_devant_la_oam (nf) | 45,000000
SC_dit_max_deriere_la_o(ni) | 3000000
LICOEincluds_all_snnemisz(ni) | fauc
'GCreoul_max_all_ennemies (i | 30.000000

f_k_GC_cam_focale: A perspective tool, use with great care. Could be very useful for making a transition appear longer/bigger than it really is, but… anything over about 1.1 will start to become very obvious.

f_k_GC_look_amplitude: This allows us to still have a little movement of the Camera on the Right-Analogue stick during Kam_Modifier events. 0.3 is a good default to use if you want to allow the player to look around a little bit. Use this wisely however, as in a lot of the transitions, art wise, it would probably be a good idea to make sure the player cannot look around freely.

[image: image14.png]6C_cam_focale (Init) 1.000000
TICGC_look_amplitude (i) 0.000000

BV Priorities:

These values will allow us to setup execution priorities on our Camera Triggers. Unless we want a more complex camera change system, we can input priorities to our Kam_Modifiers here.
[image: image15.png]B Capacities (Init)
B Sound Bank (NULL)
& seco

In particular we have these in the Kam_Modifier settings:

[image: image16.png]i_prio_modifier_actif Init)

These are particularly useful for if two Camera Triggers overlap.
[image: image17.png]KamModi1 KamMaodi2

This has been specifically designed for the ‘overlap’ section of the BV’s, and allows us to setup special priorities for the Kam_Modifiers based on direction of Kongs entry and exit to the overlap area. The Kam_Modifier with the highest active priority will win, essentially.

For example. If KamMod#1 and KamMod#2 are set 127 (inactive) and 200 (active) and KamMod#1 is the active Kam_Modifier, then KamMod#1 will continue to be used when Kong enters the overlap area as the priority of 200 beats 127. For good examples of how this has been used, check out the 07 map that Montpellier has been working on in 06 Levels\Prototypes_LevelDesign\Level_Design_Kong\07_Kong_test_FPP
Ref_Axis_Mode: This allows an AI to dynamically relocate the positioning of the o_ref_axis. This can prevent some very nasty camera behaviour. By default this is set to none.
RepulseInCircle: This simply uses the two variables, f_RefAxis_RIC_Speed and f_RefAxis_RIC_Size to alter the position of the o_ref_axis. The f_RefAxis_RIC_Size is simply a radius around the o_ref_axis will detect Kong. The f_RefAxis_RIC_Speed variable will simply avoid the problem of the camera switching too quickly. Basically, this mode helps us to avoid the problem of having a sudden change of axis when Kong gets too close to the o_ref_axis.

[image: image18.png]Ref_fois_Mode

Some Network Projection Examples:
#1 « Central Pivot, Circular Network »
[image: image19.png]En Network: Type de Projection

[image: image20.png]O.Ref.Axis; Axe deprojgction

.

This is a large ringed Network (not connected remember) with a single o_ref_axis in the centre.

#2 « Central Pivot, Arc Network »
[image: image21.png]En Network: Type de Projection

[image: image22.png]O.Ref.Axis; Axe deprojgction

| 3

This is identical to #1 but here the camera will be forced to halt at the last point of the Network whilst it continues to follow Kong.
Some examples of Constraints of distance
Ex #1 :

[image: image23.png]PO
Kong

Position sans

Contraintes
e v

Network: P2

P0 = Position of Camera with Variable 1 set null (Camera will stay set on the Network)
P1 = Position of Camera with Variable 1 set to 11m (Camera will stay a maximum of 11m away from Kong)
P2 = Position of Camera with Variable 2 set to 15m (Camera will stay 11m away from Kong unless he exceeds 15m away from the Network, the Camera will follow Kong 11m away up to 15m from the Network)
Ex #2 :
[image: image24.png]Ennemi #1
x

PO
Kong

Position sans

Contraintes
sur le

Network

Above example with the addition of the variable to include all the enemies and a max forced retreat.
P3 = Position with variable include all the enemies set to true.
P4 = With this maximum retreat set, P4 is the final position of the camera, even though an enemy is outside of it’s view range.

Ex #3 :

[image: image25.png]

P0 = of Camera with Variable 1 set null (Camera will stay set on the Network)
P1 = Position of Camera with Variable 1 set to 11m (Camera will stay a maximum of 11m away from Kong)
P2 = Position of Camera with Variable 3 set to 2m. This will only allow the Camera to back away from the Network by 2m when Kong comes too close.

